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Self-consistent equation for an interacting Bose gas
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We consider interacting Bose gas in thermal equilibrium assuming a positive and bounded pair potential
V(r ) such that 0,* dr V(r )5a,`. Expressing the partition function by the Feynman-Kac functional integral
yields a classicallike polymer representation of the quantum gas. With the Mayer graph summation techniques,
we demonstrate the existence of a self-consistent relationr(m)5F„m2ar(m)… between the densityr and the
chemical potentialm, valid in the range of convergence of Mayer series. The functionF is equal to the sum of
all rooted multiply connected graphs. Using Kac’s scalingVg(r )5g3V(gr ), we prove that in the mean-field
limit g→0, only the tree diagrams contribute and functionF reduces to the free gas density. We also inves-
tigate how to extend the validity of the self-consistent relation beyond the convergence radius of the Mayer
series~vicinity of Bose-Einstein condensation!, and study the dominant corrections to the mean field. At the
lowest order, the form of functionF is shown to depend on a single polymer partition function for which we
derive the lower and the upper bounds and on the resummation of ring diagrams which can be analytically
performed.
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I. INTRODUCTION

The interest for a better understanding of Bose-Eins
condensation has been strongly stimulated in recent year
the interesting experimental observations of condensate
cold atoms in traps@1,2#.

Concerning rigorous results on the existence of Bo
Einstein condensation in an interacting gas with pair inter
tions, we quote the work of Lieb and Seiringer@3#. The au-
thors show the existence of an off-diagonal long-range or
in the ground state of a system of Bose particles, confined
an external potential in the dilute limit in which the Gros
Pitaewski equation becomes exact. Su¨to shows condensatio
for the trapped gas at nonzero temperature@4#. In Ref. @5#,
Lauwers, Verbeure, and Zagrebnov prove the existence
Bose-Einstein phase transition for the homogeneous gas
der the assumption that there is an energy gap at the bo
of the one-particle spectrum. However, to our knowled
there is still no proof of Bose-Einstein condensation in
interacting gas when there is no trap and no gap. In
present work, we revisit this venerable many-body probl
with a new point of view, i.e., the technique of quantu
Mayer graphs.

In order to provide orientation and motivation for our a
proach, we recall some facts pertaining to the mean-fie1

Bose gas at a heuristic level. The Hamiltonian ofN Bose

*Corresponding author. Email address: phmartin@dpmail.epfl
1Here we use ‘‘mean field’’ in the sense of van der Waals, that

collective effects of a long-range interaction. The same word is
used in the context of the dilute limit@3# leading to the Gross-
Pitaewski regime. In fact, in the latter case, the situation is
opposite: dominant effects of the interaction are due to rare
local binary collisions.
1063-651X/2003/68~1!/016113~14!/$20.00 68 0161
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particles in a volumeL, interacting with a constant repulsiv
potential of strengtha/uLu, a.0, reads

Hmf,N5H0,N1
a

uLu
N~N21!

2
, ~1!

where H0,N is the total kinetic energy. It leads to the fre
energy density

f mf~b,r!5 f 0~b,r!1
a

2
r2, ~2!

wherer is the particle density,b is related to the temperatur
T by b51/kBT, kB denotes the Boltzmann constant, a
f 0(b,r) is the free energy of the noninteracting Bose g
Differenciating with respect tor yields the relation

m0~b,r!5mmf~b,r!2ar ~3!

between the chemical potentialm0(b,r) of the free gas and
the chemical potentialmmf(b,r) of the mean-field gas a
functions of the density. Since the grand-canonical densi
r0 of the free gas and the densityrmf of the mean-field gas
considered as functions of the respective chemical potent
are the inverse functions ofm0(b,r) andmmf(b,r) at fixed
b, Eq. ~3! is equivalent to the self-consistent equation

rmf~b,m!5r0„b,m2armf~b,m!…. ~4!

In Eq. ~4!

r0~b,m!5
1

~2pl2!3/2 (
q51

`
ebmq

q3/2
, ~5!

which is the well-known formula for the grand-canonic
density of the free gas with
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l5\Ab/m ~6!

representing the thermal wavelength@6#.
The series~5! converges form<0, so that the self-

consistent equation~4! is meaningful whenevern[m
2armf(b,m)<0, namely for m<mc where the critical
chemical potentialmc is given by

mc2armf~b,mc!50.

Thus mc has the valuemc5ar0,c(b), where r0,c(b)
5r0(b,m50) is the critical density of the free gas.

At this point it is worth noting that the solutionrmf(m) of
Eq. ~4! for m<mc can be extended to the rangem.mc by
continuity. Indeed, we differentiate Eq.~4! with respect to
the chemical potential to obtain2

~rmf!8~m!5
~r0!8~n!

11a~r0!8~n!
. ~7!

One sees from Eq.~5! that (r0)8(n)5` for n.0. Hence
(rmf)8(m)51/a, n.0, and requiring the continuity of the
density atm5mc gives

rmf~m!5
m

a
, m.mc . ~8!

Equations~4! and~8! define the density for all values of th
chemical potential. Form.mc , there is a Bose condensa
of densityrmf(m)2r0,c . These facts have been establish
with full mathematical rigor in several works@7–9#, see Ref.
@10# for a review. In particular, they are obtained for the K
interparticle potential

Vg~r !5g3V~gr ! ~9!

in the scaling limit ofg tending to zero. Wheng→0, the
potentialVg(r ) extends its range to infinity, whereas its am
plitude tends to zero in such a way that the mean poten
energy

E dr g3V~gr !5a ~10!

stays constant. It is well known that in classical statisti
mechanics this is the appropriate limit to rigorously reco
the van der Waals mean-field theory@11#. Also the methods
of Mayer graphs were used to calculate the corrections to
mean-field limit for smallg @12#.

In this paper, we propose a similar approach to study
interacting Bose gas with nonsingular repulsive interactio
In Sec. II, we recall the ‘‘polymer’’ representation of th
Bose gas in thermal equilibrium. Combining the Feynma
Kac functional integral representation of the Gibbs weig
together with the decomposition of permutations into cycl
one finds the grand-canonical partition function in the cl

2We keep the temperature fixed and omit from now onb in the
notation.
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d

al

l
r

e

n
s.

-
t
,
-

sicallike form of a gas of interacting polymers. Polymers a
Brownian closed loops associated with a number of B
particles belonging to a permutation cycle. Each loop ha
self-energy and there is a loop-loop pair potential. In t
space of polymers, all the techniques of classical statist
mechanics are available, in particular the analysis of the
tition function and of the density with the Mayer diagram
matic techniques. In this way, we show in Sec. III how t
mean-field equation~4! can be recovered by summing th
tree graphs.

In Sec. IV, we treat an interacting gas with a gene
short-range repulsive two-body potential and establish
its density obeys an exact equation of the form

r~m!5F„m2ar~m!…. ~11!

The functionF(m) is defined as the sum of multiply con
nected Mayer graphs. We prove with the help of the Penr
tree-graph inequality that the corresponding diagramm
expansion ofF is convergent at low density, namely if th
chemical potential is sufficently negative. Equation~11! pro-
vides a generalization of the mean-field equation~4! to the
interacting gas, i.e., if one introduces a Kac potentialVg(r ),
it is seen thatFg(m) reduces to the densityr0(m) of the free
gas asg→0, thus recovering Eq.~4!. The main aim then is
to extend the validity of Eq.~11! to higher densities~hope-
fully up to a critical density!, that is, to approach the Bos
transition point from the dilute phase, as in the mean-fi
theory.

In Sec. V, we discuss the mathematical problems that a
at this point. The study of the critical point will require th
control of the asymptotic behavior of the partition functio
of a single long repulsive polymer as well as of the mutu
interactions between different polymers. One should no
however, that the polymers occurring in the representation
the Bose gas differ from the standard self-repelling class
polymers because of the specifically quantum mechan
‘‘equal time interaction’’ introduced by the Feynman-Ka
formula. Hence, the results of the theory of classical po
mers cannot be used without further consideration. Inve
gating in this direction, we give the lower and the upp
bounds on the partition function of a single polymer, indic
ing that Eq.~11! continues to hold for a range of chemic
potentials larger than that assuring the convergence of
Mayer series. Moreover, we can calculate the effects of m
tually interacting polymers at the lowest order in the K
parameterg by summing up the ring diagrams in a close
form. Concluding remarks are presented in Sec. VI. Proof
some lemmas are relegated to Appendixes A and B, and
pendix C is devoted to the extension of our methods to
inhomogeneous Bose gas confined by an external poten

II. THE POLYMER REPRESENTATION
OF THE BOSE GAS

We consider bosons of massm in three dimensions with
the Hamiltonian
3-2
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HN52
\2

2m (
i 51

N

D i1 (
0< i , j <N

V~r i2r j ! ~12!

enclosed in a boxL, D being the Laplacian with Dirichle
conditions at the boundary ofL. The pair potentialV(r ) is
short range, repulsive, and without any singularities:

V~r !>0, E dr V~r ![a,`, supr V~r ![V̄,`.

~13!

We assume, moreover, that its Fourier transformṼ(k) is
positive.

The polymer representation of the grand-partition fun
tion at chemical potentialm and inverse temperatureb arises
when the Gibbs statistical weight is expressed in terms of
Feynman-Kac path integral where quantum fluctuations
represented by the Brownian trajectories. The open traje
ries associated with the exchange contributions are reo
nized in closed loops~or polymers! containing several par
ticles according to the decomposition of permutations i
cycles. The result is that the grand-partition function of t
Bose gas can be written in a classicallike form as~the so-
called magic formula!

JL5 (
n50

`
1

n! E )
i 51

n

dLi z~Li !exp@2bU~L1 , . . . ,Ln!#,

~14!

provided that the suitable definitions of the phase space
tegration and of the interaction are given. In one form
another, this representation has been known since a long
in various contexts starting with the work of Ginibre on t
convergence of quantum virial expansions@13#. It is also
used to implement numerical simulations of the Bose
@14#. The present form~14! has been derived and applied b
Cornu@15# to the Coulomb systems, and we follow here t
definitions given in Chap. V of Ref.@16#. A self-contained
derivation can also be found in Ref.@17#.

An elementL of the phase space, called a loop or a po
mer,

L5„R,q,X~s!,0<s<q… ~15!

is specified by its positionR in space, the numberq of par-
ticles belonging to it, and its shapeX(s). Theq particles are
located at the positions

r k5R1lX~k21!, k51, . . . ,q, q11[1, ~16!

and

r k,k11~s!5R1lX~k211s!, 0<s<1 ~17!

is an open path joining thek particle atr k to thek11 particle
at r k11, wherel is the thermal wavelength~6!. The loop can
be viewed as an extended object atR which has internal
degrees of freedom (q,X) with q the number of particles
belonging to a permutation cycle andX the shape of the
loop, see Fig. 1.
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The thermal wavelengthl ~the only place where the
Planck constant occurs! gives the extent of quantum fluctua
tions. The shape of the loopX is a Brownian bridge~a closed
Brownian path!, parametrized by the ‘‘time’’s running in the
‘‘time interval’’ @0,q# with X(0)5X(q)50. It is distributed
according to the normalized Gaussian measure*Dq(X) . . . ,
with covariance

E Dq~X!Xm~s1!Xn~s2!5dmnqFminS s1

q
,
s2

q D2
s1

q

s2

q G ,
~18!

whereXm , m51,2,3 are the Cartesian coordinates ofX. In-
tegration on the phase space means integration over s
and summation over all internal degrees of freedom of
loop,

E dL•••5 (
q51

` E Dq~X!E
L

dR•••. ~19!

Because of the Dirichlet boundary condition, the pathsX are
constrained to stay in the volumeL, but we do not write this
constraint explicitly since it will be removed later in th
infinite volume limit.

The interaction energy of the two loopsLi ,Lj is the sum
of pair Feynman-Kac potentials between the particles as
ciated to the loops,

V~Li ,Lj !5 (
k51

qi

(
,51

qj E
0

1

ds V„Ri1lX i~k211s!

2Rj2lX j~,211s!…

5E
0

qi
dsiE

0

qj
dsj d̃~si2sj !V„Ri1lX i~si !

2Rj2lX j~sj !…. ~20!

In Eq. ~20!, the distribution

d̃~s!5 (
n52`

`

e2ipns ~21!

FIG. 1. A q particle loop.
3-3
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is the periodic Dirac function of period 1.
The activity z(L) of a loop is related to the chemica

potentialm of the particles by

z~L!5
zq

q~2pql2!3/2
exp@2bU~L!#, z5ebm. ~22!

It incorporates the interactionsU(L) of the particles in the
same loop~the self-energy of the loop!,

U~L!5
1

2E0

q

ds1E
0

q

ds2 d̃~s12s2!V„l@X~s1!2X~s2!#…

2
1

2
qV~0!. ~23!

The last term substracts out the self-energy of the partic
U(L) can as well be written as

U~L!5
1

2E0

q

ds1E
0

q

ds2 d̃~s12s2!~12d [s1],[ s2]
Kr !

3V„l@X~s1!2X~s2!#…>0, ~24!

making manifest thatU(L) is a positive quantity~in the
Kroneckerd symbol @s# denotes the integer part ofs). As a
direct consequence, one gets the bound

0<z~L!<
ebmq

q~2pql2!3/2
[z(0)~q!. ~25!

From the structure~14! of the partition function and the
above definitions, it is clear that the calculation rules of
classical statistical mechanics apply to the system of loo
We shall take advantage of this fact to analyze the system
loops first and derive from there the results for the origi
quantum gas of particles. In particular, all the powerful te
niques of Mayer graphs are available to expand the l
density and the loop correlations in powers of the loop
tivities z(L). It is convenient to introduce the abbreviate
notationLi5 i anddLi5di. Mayer bonds are defined by

f ~ i , j !5e2bV( i , j )21 ~26!

and weights at vertices byz( i ) ~22!. Integration at vertices
di has to be performed according to Eq.~19!.

Notice that the bond is integrable over space since fr
the positivity ofV(r ),

u f ~ i , j !u<bV~ i , j ! ~27!

and from Eq.~20!,

E dRj u f ~Li ,Lj !u<bE dRj V~Li ,Lj !

5bE
0

qi
dsiE

0

qj
dsj d̃~si2sj !E dR V~R!

5baqiqj . ~28!
01611
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The loop densityr loop(L) is given by the standard expansio

r loop~1!5 (
n51

`

nBn~1!, ~29!

where

Bn~1!5
1

n! E d2•••dnz~1!z~2!•••z~n!u~1,2, . . . ,n!,

~30!

and

u~1,2, . . . ,n!5(
Gn

)
( i , j )PGn

f ~ i , j ! ~31!

is the Ursell function. The sum runs over all labeled co
nected graphsGn with n vertices. We have directly written
the loop density~29! in the infinite volume limit, namely
extending the spatial integralsdR2 , . . . ,dRn at vertices
2, . . . ,n over the whole space, whereas the vertex 1~the root
point of the graph! carries no spatial integration. The exi
tence of the infinite volume limit of the individual Maye
graphs follows from the translation invariance and integ
bility of the Mayer bond as in the classical case. As a co
sequence,r loop(L)5r loop(q,X) does not depend on the loca
tion R of the loopL in space.

Finally, to obtain the original particle densityr(m) from
the loop density, we have to sumr loop(L) over the internal
variables ofL,

r~m!5 (
q51

`

qE Dq~X!r loop~q,X!, ~32!

the additionalq factor takes into account that the loopL
carriesq particles.

Although classical methods have been used, it is imp
tant to stress the difference between the loop representa
of the equilibrium state of the quantum Bose gas and tha
a gas of genuine classical polymers. First, the chemical
tentialm is not the variable which is thermodynamically co
jugate to the polymer number, but to the original partic
number. Moreover, the loop interactions differ from the cla
sical polymer interactions by the quantum mechani
‘‘equal time prescription,’’ which originates from the
Feynman-Kac formula. This equal time prescription is ma
fested in Eqs.~20! and~23! by the occurrence of the periodi
delta functiond̃(s12s2). In the classical interaction, ever
segment of the polymer interacts pairwise with any oth
segment, which would correspond to the potentials~20! and
~23! without the equal time prescription. The purely classic
gas of point particles, interacting by means of the two-bo
potential V(r ), is recovered if the thermal lengthl is set
equal to zero in~20! and if only the terms withq51 ~Bolt-
zmann statistics! are retained.
3-4
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III. MEAN-FIELD LIMIT AND
TREE-GRAPH SUMMATION

Let us first show how the self-consistent mean-field Bo
gas is recovered in the diagrammatic analysis. To this e
we split the bondf ( i , j ) into its part linearized in the poten
tial and higher-order terms,

f ~ i , j !5 f (a)~ i , j !1 f (b)~ i , j !,

f (a)~ i , j !52bV~ i , j !,

f (b)~ i , j !5e2bV( i , j )211bV~ i , j !. ~33!

These bonds are represented in Fig. 2.
This simply enlarges the previous class of graphs (G) to

graphs~still denoted byG) where each bond can be eith
f (a)( i , j ) or f (b)( i , j ).

In the mean-field limitg→0, the contributions of orde
O(1) in g due to the scaled potentialg3V(gr ) will come
from the linearized bonds

f g
(a)~ i , j !52bg3E

0

qi
dsiE

0

qj
dsj d̃~si2sj !

3V„g~Ri2Rj !1gl@X i~si !2X j~sj !#… ~34!

and from the vertex weights

z(0)~ i !5
zqi

qi~2pqil
2!3/2

. ~35!

The bond f g
(a)( i , j ) will give contributions of orderO(1)

since under scaling~10! its total spatial integral

E dRj f g
(a)~ i , j !52baqiqj ~36!

is independent ofg. In the activity~22!, we simply disregard
the self-energyUg(L) since the latter isO(g3).

Proposition 1. The densityr tree(m) calculated as the sum
of all the tree graphs with bonds~34! and vertices~35! veri-
fies the mean-field equation~4!.

Proof. Consider a rooted tree-graphTn11 with vertices
(0,1, . . . ,n) for which the root point is of degree 1 (0 is th
label of the root point!,3 see Fig. 3. Hence the root point
linked to the rest of the graph by a single bond, sayf (a)(0,1).
Call Tn the subgraph ofTn11 with vertices (1,2, . . . ,n) and

3The degree of a point is the number of lines incident at this po

FIG. 2. The bondsf (a)( i , j ) and f (b)( i , j ).
01611
e
d,

tn(1) the value of this subgraph once integrated on the v
tices 2, . . . ,n. Then the valuetn11(L0) of the rooted graph
Tn11 is

tn11~L0!52bz(0)~q0!E dL1 Vg~L0 ,L1!tn~L1!. ~37!

The vertex of the graphTn linked to the root point 0 can
haven different labels. The resulting tree graphs are differe
because they contain different links with the root poi
Moreover, because of translational invariance,tn(1)
5tn(q1 ,X1) does not depend on the positionR1 of the loop
L1. Thus the spatial integration overR1 can be performed on
Vg(L0 ,L1) as in Eq.~36! so that the total contribution read

ntn11~L0!5z(0)~q0!~2baq0!

3F (
q151

`

q1E D~X1!ntn~q1 ,X1!G . ~38!

According to Eqs.~29! and ~32!, the quantity in the bracke
is precisely the contribution to the particle densityr tree(m) of
the graphTn . Therefore the sum of all the tree graphs havi
a root point of degree 1 isz(0)(q0)@2baq0r tree(m)#. The
sum of all the tree graphs with root point of degreen is
z(0)(q0)@2baq0r tree(m)#n/n! ~the factor 1/n! takes care of
the fact that the labeling of the vertices belonging to differe
branches attached to the root point can be permuted with
giving rise to new Mayer graphs!. Finally, summing on all
the trees rooted at the point 0 gives the density of loo
According to Eq.~32!, to obtain the particle density we sti
have to sum on the internal variablesq0 ,X0 of the root loop
with a factorq0. Hence using Eq.~35!, we find

r tree~m!5 (
q051

`

(
n50

`
q0z(0)~q0!

n!
„2baq0r tree~m!…n

5 (
q051

`
exp„b@m2ar tree~m!#…

~2pq0l2!3/2
5r0„m2ar tree~m!…,

~39!t.

FIG. 3. Rooted treeTn11 with subtreeTn .
3-5
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which is the mean-field equation~4!.
We now come back to the general Mayer series and pr

its convergence at low density.
Proposition 2. The Mayer series~29!, ~32! converges for

m<2ar0,c with r0,c5r0(b,m50) the critical density of the
free gas.

Proof. We use the Penrose tree-graph inequality for po
tive potentials which states that the sum of the tree gra
provides an upper bound for the Ursell function@18#

u~1,2, . . . ,n!<(
Tn

)
( i . j )PTn

u f ~ i , j !u<(
Tn

)
( i . j )PTn

„bV~ i , j !…,

~40!

the second inequality being a consequence of Eq.~27!.
Moreover, if in the series~29! we use the inequality~25!, we
see that the tree summation with bondsu f (a)( i , j )u
5bV( i , j ) and verticesz(0)( i ) provides also an upper bound
According to Proposition 1, the latter series sums up t
function r̄(m) that obeys

r̄~m!5r0„m1ar̄~m!…. ~41!

This is the mean-field equation of a Bose system for
negative potential2V(r ). It has a finite solution provided
m1ar̄(m)<0 which is equivalent tom<2ar0,c . We con-
clude that

r~m!<r̄~m!,`, m<2ar0,c . ~42!

Notice that in the case of the scaled potentialVg(r ), the
convergence of the series definingrg(m) is not only absolute
but also uniform with respect tog. This follows from the
fact that in the evaluation of the tree-graph contributions o
encounters only the integrated bonds,

E dRj u f g
(a)~ i , j !u5baqiqj .

The Penrose inequality yields thus ag-independent uppe
bound. Now we show that in Kac limit, the density co
verges to the mean-field value.

Proposition 3. Letrg(m) be the density associated wit
the scaled potentialVg(r )5g3V(gr ). Then

lim
g→0

rg~m!5rmf~m!, m<2ar0,c . ~43!

Proof. Consider first a graphGn with vertices 1,2, . . . ,n
~rooted at point 1) which is not a tree, i.e., it contains at le
one cycle. Delete some bonds in such a way that the gr
thus obtained is a connected treeTn with value tn(1). In
order to find an upper bound for the valuegn,g(1) of Gn , we
use the inequalites

u f g~ i , j !u<bVg~ i , j !, ~44!

for the bonds remaining in the tree, and

u f g~ i , j !u<g3bqiqj V̄, ~45!
01611
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for each deleted bond. Notice that Eq.~45! is obtained by
replacing the pair potential in Eq.~34! by its supremumV̄.
Moreover, the activityz( i ) is bounded byz(0)( i ) ~25!. The
spatial integration of a bond (i , j ) of the tree yields the facto
baqiqj as before so that with Eq.~45! a vertex~i! of degree
ki in Gn receives a factorqi

ki multiplied by the activity
z(0)(qi). If , bonds have been deleted, the resulting inequ
ity has the form

ugn,g~1!u<~g3V̄!,~ba!n21

3 (
q2 , . . . ,qn51

`

q1
k1
•••qn

knz(0)~q1!•••z(0)~qn!.

~46!

In view of the exponential factorebmq in Eq. ~25!, the q
series in Eq.~46! is convergent form,0. Hence the pres-
ence of one cycle inGn implies thatgn,g(1) tends to zero not
slower thang3 for g→0 ~and asg3, if Gn has, cycles!.

If Gn is a tree, we decompose the Mayer bonds as in
~33!. Since

u f (b)~ i , j !u<
1

2
„bV~ i , j !…2<

1

2
g3bqiqj V̄„bV~ i , j !…, ~47!

all the contributions toGn containingf (b)( i , j ) bonds vanish
asg→0.

As we have seen from the Penrose estimate and f
Proposition 2, the Mayer series constitutingrg(m) is abso-
lutely uniformly convergent with respect tog. By dominated
convergence, the limit of the diagrammatic sum can be c
culated term by term. Therefore we are left with the sum
trees where all the bonds are of the typef g

(a)( i , j ) and where
the activitieszg( i ) can be replaced byz(0)( i ) asg→0. This
is exactly the situation as in Proposition 1 thus provi
Proposition 3.

IV. THE SELF-CONSISTENT EQUATION
FOR THE INTERACTING GAS

The reasoning which led to Eq.~39! was restricted to the
tree diagrams. We now show how it can be generalized
provide an implicit equation for the exact densityr(m). To
this end, we consider the complete set of expanded Ma
graphs with the two types of bondsf (a)( i , j ) and f (b)( i , j ),
defined in Eq.~33!, and call f (a)( i , j ) a single interaction
bond. A graph is said to be multiply connected4 if it cannot
be disconnected by cutting a single interaction bond. Th
we defineI (L) to be the value of the sum of all multiply
connected graphs with one root pointL, see Fig. 4.

Because of translation invariance,I (L) does not depend
on the positionR of L. Denoting here the chemical potenti
by n, we define the function

4In the context of Feynman diagrams, such graphs are also ca
one-line irreducibles.
3-6
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F~n!5 (
q51

`

qE Dq~X!I ~L!. ~48!

For n<2ar0,c , the functionF(n) is represented by a con
vergent sum since it is a subseries of the absolutely con
gent Mayer expansion~Proposition 2!.

Proposition 4. Form<2ar0,c , r(m) verifies the equation

r~m!5F„m2ar~m!…. ~49!

Proof. To establish Eqs.~48! and ~49!, we proceed as in
Proposition 1. Considering now a general structure of Ma
graphs, we say that a vertex~i! in a graph has a star structu
if there is a number of incident single interaction lines
vertex ~i! such that cutting any one of them disconnects
graph. Consider first a vertex~i! having a star structure con
sisting of one single interaction line. This interaction lin
say f (a)( i ,1), links the vertex~i! to a subgraphGn with ver-
tices (1,2, . . . ,n); Gn has no other links with the rest of th
graph, see Fig. 5. Once integrated on the points (2, . . . ,n),
its valuegn(1) does not depend on the positionR1 of the
loop L1. Thus the spatial integration overR1 can be per-
formed on the bond@2bV(Li ,L1)# yielding the factor
(2baqiq1). As in ~38!, its total contribution to the vertex~i!
equals

z~Li !~2baqi !F (
q151

`

q1E Dq1
~X1!ngn~q1 ,X1!G . ~50!

But from Eq. ~32!, the quantity in the square bracket is th
contribution of the graphGn to the exact density. Thus th
sum of all such graphs contributes to the vertex~i! as
z(Li)„2baqir(m)…. Continuing the reasoning along th
lines of the proof of Proposition 1, we consider next the s
of all star structures at~i! having n single interaction lines.
Their contribution equalsz(Li)@2baqir(m)#n/n!. Finally,

FIG. 4. The sum of multiply connected graphs.

FIG. 5. Star structure at vertex~i! and subgraphGn .
01611
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summing all possible star structures at (i ), we arrive at the
formula for an effective activity

z* ~Li !5z~Li !e
2bar(m)qi5

eb„m2ar(m)…qi

qi~2pqil
2!3/2

e2bU(Li ).

~51!

This is precisely the previous activityz(Li) ~22! evaluated at
the shifted chemical potentialn5m2ar(m).

From this analysis, we see thatr(m) can as well be ob-
tained by summing all multiply connected graphs with bon
f (a)( i , j ) and f (b)( i , j ) with effective activitiesz* (Li) at ver-
tices. Indeed, by construction, any graph in these series i
original Mayer graph. Conversely, each Mayer graph d
appear therein. This can be shown by the following reas
ing. Consider any connected graph made of the bo
f (a)( i , j ) and f (b)( i , j ) and remove all single interaction line
f a( i , j ) whose presence makes it not mutliply connected~by
definition removal of such a line disconnects the root po
from a part of the graph!. Then the remaining subgraph con
nected to the root point is a multiply connected graph fro
which the original Mayer graph is obtained in a unique w
by forming star structures. This concludes the proof since
view of formula ~51!, by forming F(n) according to these
rules we find the density equal to the value of this function
the shifted argumentn5m2ar(m).

As a corollary of Proposition 3, we have that ifFg(n) is
calculated with the scaled potentialVg(r ), then
limg→0 Fg(n)5r0(n).

We can write I (L) appearing in the definition~48! of
function Fg(n) as the sum

I ~L!5z~L!@11I cycle~L!# ~52!

of the pure root point term plus all the multiply connect
graphs containing cycles andf (b)( i , j ) bonds. It is clear from
the proof of Proposition 3 that the mean-field density ari
solely from the root pointz(L), whereasI cycle(L) becomes
vanishingly small in the mean-field limit.

All the results presented so far are valid within the co
vergence radius of the Mayer series determined bym,
2ar0,c . The question then arises as to whether the den
as solution of Eq.~49!, can be extended to larger values ofm
~as was possible in the strict mean-field case!. An investiga-
tion of this question and of the mathematical difficulties i
volved is presented in the following section.

V. THE BOSE GAS BEYOND THE MEAN FIELD

A. Vertex contribution: The single polymer partition function

In this section, we study the structure of functionF(n) in
a more detailed way. The first termf (0)(n) of the expansion
of F(n) in multiply connected graphs corresponds to the r
point z(L), which is a single vertex contribution,
3-7
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f (0)~n!5 (
q51

`

qE Dq~X!z~L!5
1

~2pl2!3/2 (
q51

`
ebnq

q3/2
k~q!.

~53!

Here we have introduced the mean value of the Boltzm
factor

k~q!5^e2bU&q[E Dq~X!e2bU(q,X) ~54!

of a single closed polymer carrying the repulsive ene
~23!. The Brownian bridge measure defining the avera
^•••&q is normalized to 1, namely ifU(q,X)50, one has
k(q)51 andf (0)(n) reduces then to the free gas density~5!.
Moreover, for positive potentials we have 0<k(q)<1.
Clearly, the radius of convergence of the series~53! is deter-
mined by the asymptotic behavior ofk(q) for q→`. The
following bounds can be established.

Lemma 1. There existsn1 such that

k~q!>e2bqn1. ~55!

Proof. This lower bound follows from Jensen inequality

k~q!>exp~2b^U&q!, ~56!

where

^U&q5E Dq~X!U~q,X! ~57!

is the average energy of the polymer. The value ofn1 results
from a direct calculation of̂U&q presented in Appendix A.

There is also an upper bound.
Lemma 2. Letr be a fixed integerr>2. There existsn2

~depending onr ) such that 0,n2,n1 and

k~qr !<r 3/2exp~2bqrn2!. ~58!

Proof. The upper bound is derived by splitting the clos
loop X(s), 0<s<q, X(0)5X(q)50, into the union of two
open Brownian pathsX1(s), 0<s<q1 and X2(s), q1<s
<q, and disregarding the~positive! interactions between th
two pathsX1 and X2. The details and the form ofn2 are
given in Appendix B.

The lemmas imply thatf (0)(n) is finite if n<n2 and di-
verges forn.n1 . Let us suppose for a moment that the
exists a critical valuenc such that

f (0)~n!,`, n<nc ,

f (0)~n!5`, n.nc . ~59!

In this case, there will be a critical densityrc5 f (0)(nc) and
a critical chemical potentialmc5arc1nc . From Lemmas 1
and 2, one has necessarilyn2<nc,n1 .

The determination of the possible existence ofnc requires
the knowledge of the exact asymptotic behavior ofk(q) as
q→`. In this respect, let us make the following comme
concerning the theory of classical polymers, defined as th
interacting via the standard pairwise repulsion,
01611
n
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Ucl~L!5
1

2E0

q

ds1E
0

q

ds2 V„X~s1!2X~s2!…. ~60!

It is firmly established, although not rigorously proved, th
the normalized partition function of a single classical clos
polymer behaves~in three dimensions! as @19#

kcl~q!5E Dq~X!e2bUcl(L);C
e2bAq

q3(npol21/2)
, q→`,

~61!

whereA is a constant depending on the choice of the pot
tial V(r ), andnpol50,589 is the universal critical exponen
for a swollen polymer. Inserting this asymptotic behavior
the series~53! gives nc5A and a finite critical densityrc
since the series is convergent atn 5nc . It is an open ques-
tion to find out whether a similar situation holds for th
‘‘quantum’’ polymers subjected to the ‘‘equal time’’ interac
tion ~23!.

B. Bond contributions: Interacting polymers

The interaction between different polymers occurs in m
tiply connected graphs having the bondsf (a)( i , j ) or
f (b)( i , j ). It turns out that the subseriesI ring(L) of I cycle(L)
defined as the sum of all multiply connected graphs hav
exactly one cycle of interaction bonds can be summed i
closed form, see Fig. 6@the second term of the series corr
sponds to the quadratic term (bV)2( i , j )/2 in the expansion
of f (b)( i , j ), ~33!#. The result is

I ring~L!5
1

2E dkE
0

q

dsE
0

q

dt eilk•„X(s)2X(t)…

3 (
n52`

`
„bṼ~k!…2an

2~k!

11bṼ~k!an
2~k!

e2ipn(s2t). ~62!

Here Ṽ(k) is the Fourier transform of the potential, and th
positive coefficientsan

2(k),

an
2~k!5 (

q50

`

qE
0

q

dsE Dq~X!z~L!eilk•X(s)e2ipns, ~63!

come from the summation of the internal degrees of freed
of loops at vertices. A derivation of formula~62! can be
found in Ref.@20# where the effective loop-loop potential i
calculated as the sum of all chain graphs.I ring(L) is given
precisely by formula~84! in Ref. @20#, restricted to a single
species of bosonic particles and with the Fourier transfo
4p/uku2 of the Coulomb potential replaced by the prese

FIG. 6. The sum of rings.
3-8
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short-range potentialṼ(k) @in Ref. @20# the coefficients
4pban

2(k) are notedk2(k,n)].
We now check thatI ring(L) is also well defined in the

rangen,n2 @or possiblyn,nc if there is a critical valuenc
~59!#. As the modulus of the phase factors in Eq.~62! equals
1, the positivity ofbṼ(k)an

2(k) implies the inequality

I ring~L!<
q2

2 E dk„bṼ~k!…2 (
n52`

`

an
2~k!. ~64!

From Eqs.~63! and ~21!

(
n52`

`

an
2~k!5 (

q51

`

qE Dq~X!z~L!F E
0

q

ds eilk•X(s)d̃~s!G
< f (1)~n!. ~65!

We have defined

f (k)~n!5 (
q51

`

qk11E Dq~X!z~L!5 (
q51

`

qk
ebnq

~2pql2!3/2
k~q!,

~66!

and the inequality follows from the fact that the brack
@•••# is less than or equal toq. Hence the contribution of the
ring diagramsF ring(n) to the functionF(n),

F ring~n!5 (
q51

`

qE D~X!z~L!I ring~L!, ~67!

is bounded by

F ring~n!<
1

2E dk„bṼ~k!…2f (1)~n! f (2)~n!, ~68!

where inequality~25! has been also used. In view of Lemm
1, it is clear thatf (k)(n) ~66! is finite for n,n2 , and thus
F ring(n) is also well defined in this extended range of chem
cal potentials.

The ring contribution is expected to be small for a sca
potential Vg when g→0. Indeed if the Fourier transform
Ṽg(k)5Ṽ(k/g) of Vg is introduced in Eq.~68! and thek
integration variable is changed intok5gp, we find immedi-
ately

F ring,g~n!<
g3

2 E dp„bṼ~p!…2f g
(1)~n! f g

(2)~n!5O~g3!,

n,n2 . ~69!

In Eq. ~69!, f g
(k)(n) are still dependent ong through the

single polymer partition functionkg(q).
If one introduces the scaled potential in the full expre

sion ~62! ~setting k5gp), one observes the subtle depe
dence of the parameterg. There is an overallg3 prefactor
that manifests the smallness of the scaled potential as in
classical case. Ag factor occurs also in the phase in th
integrands of Eqs.~62! and ~63! in the combinationgl,
01611
t
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d
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-

he

representing the ratio of the thermal wavelength and the
tential range. The importance of these phases will there
depend on the value of this ratio. Finally,g appears in the
loop activity zg(L) in Eq. ~63!. For g small andgl!1, we
can replace the above mentioned phase factors by 1
approximate

F ring~n!;
g3

2
f g

(2)~n!E dp
„bṼ~p!…2f g

(1)~n!

11bṼ~p! f g
(1)~n!

, g→0.

~70!

This will be the dominant term in the expansion ofI cycle(n)
since the terms withk.1 cycles will obtain an overallg3k

prefactor.

VI. CONCLUDING REMARKS

The use of quantum Mayer graphs proved useful in d
covering the existence of an implicit equation~49!, defining
the density of an interacting Bose gas as function of
chemical potential. The knowledge of the precise form of
equation requires the resummation of all multiply connec
diagrams including the single vertex contribution. It shou
be recalled that in a series of papers, Lee and Yang h
developed a diagrammatic formalism for the quantum sta
tical mechanical, many-body problem that enables us to
culate the thermodynamical quantities in terms of t
Boltzmann-type Ursell functions together with the rules ta
ing quantum statistics into account~see Ref.@21# for the
general formalism and Ref.@22# for the application to
bosons!. The many-body theory in terms of Ursell operato
has been further studied in a series of papers@23# ~see also
Ref. @24#!. Working in the occupation number representati
in momentum space, also obtain formally exact integ
equations for the average occupation of modes and, in
ticular, for the condensate density. The latter equation~a gen-
eralization of the Bogoliubov condensate equation! was
shown to be exact in the thermodynamic limit by Ginib
@25#, and it has also been established in the framework
infinitely extended states of the Bose systems@26#. Our for-
mulation is different in the sense that it provides a clos
equation for the density of the interacting gas at fixed che
cal potential that is particularly well adapted to the explo
tion of the neighborhood of the mean-field limit. Moreover,
provides an interesting link with the theory of polymers.

Assume that the resummation of multiply connected d
grams leading to Eq.~49! can been performed. It is then no
excluded that the resulting nonperturbative equation rem
valid beyond the radius of convergence of the Mayer ser
If so, the question of the Bose-Einstein condensation in
interacting gas could be examined on the basis of Eq.~49!.
At least one example supports this hope, i.e., such an ex
sion to the transition region agrees with the rigorous res
in the case of the mean-field limit. This fact motivates t
study of the self-consistent relation~49! beyond the mean-
field limit. We formulated this problem here using scaling~9!
of the pair potential. In order to derive the form of functio
Fg defining relation~49! for the scaled potential, one need
to know the smallg asymptotics of~i! the mean value of the
3-9
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Boltzmann factor of a single polymer~or normalized parti-
tion function! and~ii ! the sum of ring diagrams representin
the contribution of the interacting polymers.

In the study of point~i! we could not use directly the
known results~61! because of equal time condition impos
by quantum mechanics on interactions between the diffe
elements of the polymers~20!. The existence and localiza
tion of the Bose-Einstein condensation depends in a cru
way on the behavior of point~i! for extended polymers. This
however, remains an open problem. Our paper provides
the exact upper and lower bounds which, what is interest
turn out to be qualitatively compatible with the classical
sult ~61!. There are some indications that in theg→0 limit
the quantum calculation approaches the classical one. H
ever, this question is at present not yet understood. We h
based the analysis of point~ii ! on the remarkable fact tha
quantum Mayer ring diagrams can be summed in a clo
analytical form. We thus arrived at an analytic express
~62! for the sum of the relevant ring diagrams. Howev
here again the smallg limit of Eq. ~62! involves the normal-
ized single polymer partition function whose asymptotics
the extended polymers remains to be derived. We hope
e

ic
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the continuation of the study of quantum Mayer graphs alo
these lines and progress in the understanding of the poly
partition functions will eventually lead to the determinatio
of functional relation~49! beyond the mean-field theory.
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APPENDIX A: PROOF OF LEMMA 1

The average energy~57! is calculated from its definition
~23! @introducing also the Fourier transformṼ(k) of the po-
tential#:

^U&q5J~q!2q
V~0!

2
, ~A1!

where
J~q!5
1

2E Dq~X!E
0

q

ds1E
0

q

ds2 d̃~s12s2!V„l@X~s1!2X~s2!#…

5
1

2E dk Ṽ~k!E
0

q

ds1E
0

q

ds2 d̃~s12s2!E Dq~X!eilk•[X(s1)2X(s2)] . ~A2!
From the basic rules for Fourier transforms of Gaussian m
sures, we have using the covariance~18!

E Dq~X!eilk•[X(s1)2X(s2)]5expF2
l2k2

2
Cq~s12s2!G ,

k5uku, ~A3!

where

Cq~s!5usuS 12
usu
q D . ~A4!

Since bothd̃(s) and Cq(s) can be considered as period
functions of periodq, the double time integral in Eq.~A2!
reduces to

E
0

q

ds1E
0

q

ds2 d̃~s12s2!expF2
l2k2

2
Cq~s12s2!G

5q(
n50

q21

expF2
l2k2

2
Cq~n!G

5q(
n51

q21

expF2
l2k2

2
Cq~n!G1q. ~A5!
a-When this is introduced in Eqs.~A2! and ~A1! @noting that
*dk Ṽ(k)5V(0)], oneobtains finally

^U&q5qE dk Ṽ~k!g~k,q! ~A6!

with

g~k,q!5
1

2 (
n51

q21

expF2
l2k2

2
Cq~n!G

5 (
n51

q/2

expF2
l2k2

2
Cq~n!G . ~A7!

The last equality results from the symmetryCq(n)5Cq(q
2n). If n<q/2, one has obviouslyCq(n)>n/2 which leads
to the bound

g~k,q!< (
n51

q/2

expF2
l2k2

4
nG< 1

expS l2k2

4 D21

~A8!

hence
3-10
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^U&q<qn1 , n15E dk
Ṽ~k!

expS l2k2

4 D21

, ~A9!

thus proving Lemma 1.
It is instructive to exhibit the behavior ofn1 in the scal-

ing limit of a Kac potentialṼg(k)5Ṽ(k/g). Settingk5gp
in Eq. ~A9! gives

n15g3E dp
Ṽ~p!

expS g2l2p2

4 D21

;
4g

l2E dp
Ṽ~p!

p2
, g→0.

~A10!

APPENDIX B: PROOF OF LEMMA 2

We denote ^F&W5E„FuX(0)50… as the normalized
Wiener expectation of the functionalF(X) of paths X(t)
starting from the origin at timet50, and E„FuX(t1)
5R1 ,X(t2)5R2… as the conditional Wiener expectation f
paths starting inR1 at time t1 and ending inR2 at time t2.
One has, in particular,

^F&W5E dR E„FuX~0!50,X~ t !5R…, t.0,

E„1uX~ t1!5R1 ,X~ t2!5R2…5

expS 2
uR12R2u2

2~ t22t1! D
„2p~ t22t1!…3/2

,

t2.t1 . ~B1!

The fact that Brownian motion is an homogeneous proc
implies the following symmetry relations under time a
space translation, and space inversion:

E„FuX~ t1!5R1 ,X~ t2!5R2…

5E„FtuX~ t11t!5R1 ,X~ t21t!5R2…

5E„FRuX~ t1!5R11R,X~ t2!5R21R…

5E„F2uX~ t1!52R1 ,X~ t2!52R2…, ~B2!

with Ft„X(•••)…5F„X(•••1t)…, FR„X(•••)…5F„X(•••)
1R… and F2„X(•••)…5F„2X(•••)…. Consider now the
functional

Fq1 ,q2
~X!5expF2

b

2Eq1

q2
dsE

q1

q2
dt d̃~s2t !~12d [s1],[ s2]

Kr !

3V„X~s!2X~ t !…G , ~B3!

where index (q1 ,q2) means that the functional depends
the path only whent is in the interval@q1 ,q2#. In the present
notation, the normalized Brownian bridge average of a fu
tional F reads
01611
ss

-

E Dq~X!F~X!5~2pq!3/2E„FuX~0!50,X~q!50…

~B4!

and therefore the vertex functionk(q) ~54! for a q-particle
loop X is

k~q!5~2pq!3/2E„F0,quX~0!50,X~q!50…. ~B5!

In F0,q(X), we suppress the interaction between the sets
particles 1, . . . ,q1 andq111, . . . ,q. SinceV is positive this
leads to the inequality

F0,q~X!<F0,q1
~X!Fq1 ,q~X!, ~B6!

implying in Eq. ~B5!, in view of the Markov property of the
Brownian motion,

k~q!<~2pq!3/2E dRE„F0,q1
uX~0!50,X~q1!5R…

3E„Fq1 ,quX~q1!5R,X~q!50…

5~2pq!3/2E dRE„F0,q1
uX~0!50,X~q1!5R…

3E„F0,q2
uX~0!50,X~q2!5R… ~B7!

with q5q11q2. The second line follows from the symmetr
relations~B2! and the fact that the potential is invariant u
der space translations and inversion. Considering now
Wiener expectation ofF0,q(X), we establish in the same wa

^F0,q11q2
&W<^F0,q1

&W^F0,q2
&W ~B8!

again as a consequence of the Markov property of
Brownian process and the invariance~B2!. We exploit the
inequalities~B7! and ~B8! as follows. We first use Eq.~B7!
to relax the constraint of the closed path, noting from E
~B1! that E„F0,q2

uX(0)50,X(q2)5R…<(2pq2)23/2 and
from Eq. ~B7!

k~q!<S 11
q1

q2
D 3/2

^F0,q1
&W , q5q11q2 , q2>1.

~B9!

Then we setq15nq0 ,q25n,q5n(q011) for some fixed
integerq0>1. From Eq.~B9! and the iteration of Eq.~B8!

k„n~q011!…<~11q0!3/2~^F0,q0
&W!n. ~B10!

If one sets

n252
1

b~q011!
ln^F0,q0

&W.0, r 5q011, ~B11!

one obtains the result of Lemma 2.
3-11
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APPENDIX C: THE BOSE GAS IN
AN EXTERNAL POTENTIAL

Motivated by the experimental situation of bosonic ato
in traps, we briefly show in this appendix how the formalis
works in presence of an external field~more details can be
found in Ref.@27#!. If a one-body external potentialVext(r )
is introduced, the formula for the grand-canonical partiti
function J is still given by Eq.~14! with the only change
that the loop activityz(L) is replaced by

z̃~L!5z~L!e2bVext(L),

Vext~L!5E
0

q

ds Vext
„R1lX~s!…. ~C1!

Since the density is nonuniform, it is appropriate to consi
here the average total particle number^N&:

^N&5b21
]

]m
ln J5 (

n51

`
1

n! E dL1•••dLnS (
,51

n

q,D
3)

k51

n

z̃~Lk!u~L1 , . . . ,Ln!

5 (
n51

`
1

~n21!! E dL1•••dLnq1

3)
k51

n

z̃~Lk!u~L1 , . . . ,Ln!, ~C2!
al
tia
e
t

01611
s

r

where we have introduced the Mayer expansion of lnJ and
u(L1 , . . . ,Ln) is the Ursell function~31!.

The external potential will be chosen positive and confi
ing with the sufficiently fast growth at infinity so tha
*dr exp„2bVext(r )…,`. In order to allow for a well-
defined infinite particle number limit, it is necessary to sc
the external potential as

Vv
ext~r !5Vext~vr !, ~C3!

with Vext(r ) a fixed positive confining potential. As the sca
ing parameterv tends to 0,Vv

ext(r ) becomes less confining
and the average particle number^N&(b,m,v) diverges. The
proper quantity that remains finite in the limit is the produ
v3^N&(b,m,v). The experimental situation for atoms i
traps appears to be well described in this asymptotic reg
@1#. We have indeed the following proposition.

Proposition 5. In the range of convergence of the Ma
series for the uniform Bose gas, limv→0 v3^N&(b,m,v)
[N(b,m) exists and

N~b,m!5E dr r„b,m2Vext~r !…, ~C4!

with r(b,m) the density of the uniform Bose gas.
Proof. In the scaling limit defined by Eq.~C3!, the gas is

locally uniform at pointr with a space dependent chemic
potentialm(r )[m2Vext(r ).

We write Vv
ext(L)5Vext(vR,q,vX) and u(L1 , . . . ,Ln)

5u(R1 ,q1 ,X1 , . . . ,Rn ,qn ,Xn). The spatial part of the in-
tegral in thenth order term of the series~C2! reads~with the
additional factorv3)
ll
v3E dR1 dR2•••dRn)
k51

n

e2bVext(vRk ,qk ,vXk)u~R1 ,q1 ,X1 ,R2 ,q2 ,X2 , . . . ,Rn ,qn ,Xn!

5E dr e2bVext(r ,q1 ,vX1)E dR2•••dRn)
k52

n

e2bVext(r1vRk ,qk ,vXk)u~0,q1 ,X1 ,R2 ,q2 ,X2 , . . . ,Rn ,qn ,Xn!, ~C5!

where one has made the successive change of variablesRk→Rk1R1 , k52, . . . ,n, thenvR15r , and used that the Urse
function is translation invariant with respect to its spatial variables. Since limv→0 Vext(r1vRk ,qk ,vXk)5qkV

ext(r ) and the
Ursell function is jointly integrable onR2 , . . . ,Rk , expression~C5! tends by dominated convergence to

E drF )
k51

n

e2qkVext(r )G F E dR2•••dRn u~0,X1 ,q1 ,R2 ,X2 ,q2 , . . . ,Rn ,Xn ,qn!G . ~C6!
es
The first bracket, when combined with the loop activityz(L)
~22!, simply yields the shifted local chemical potenti
m(r )5m2Vext(r ), whereas the second bracket is the spa
part of the integral of the Ursell function occurring in th
loop density series~29! of the uniform gas evaluated at poin
R150. When this is introduced in the series~C2! for
l

v3^N&(b,m,v) and the integrations on the internal degre
of freedom of the loops are taken into account@using also
Eq. ~32!#, one obtains the result~C4! in the limit v→0.

To show convergence, one introduces the expression~C5!

in the series~C2! and majorize factorse2bVext(r1vRk ,qk ,vXk)

by 1, k52, . . . ,n:
3-12
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v3^N&~b,m,v!< (
n51

`
1

~n21!! (
q151

`

q1E Dq1
~X1!

3E dr e2bVext(r ,q1 ,vX1))
k51

n

z~Lk!

3E dL2•••dLnu~L1 ,L2 , . . . ,Ln!

5(
q1

`

q1E Dq1
~X1!E dr e2bVext(r ,q1 ,vX1)

3r loop~L1!, ~C7!

where r loop(L1) is the Mayer series~29! for the uniform
system evaluted atL15(0,q1 ,X1). Using again the positiv-
ity of Vext(r ) and Jensen inequality, we have

E Dq1
~X1!E dr e2bVext(r ,q1 ,vX1)

<E Dq1
~X1!E dr expF2bE

0

1

ds Vext„r1vlX~s!…G
<E Dq1

~X1!E
0

1

dsE dr exp@2bVext„r1vlX~s!…#

5E dr e2bVext(r ). ~C8!

The convergence of Mayer series~29! is established in
Proposition 2 with bounds that are independent of the sh
X1 of the loopL1. Combining this previous analysis wit
Eq. ~C8!, one gets eventually

v3^N&~b,m,v!<r̄~m!E dr e2bVext(r ) ~C9!

with r̄(m) defined in Proposition 2. Since estimates are u
form with respect tov, the existence of the limit~C4! fol-
lows again by the dominated convergence.

Moreover, if the two-body potential is scaled according
Eq. ~9!, one obtains immediately from Proposition 3 th
mean-field limit for the trapped Bose gas
v

,

r

01611
pe

i-

Nmf~b,m![ lim
g→0

N~b,m,g!5E dr rmf„b,m2Vext~r !….

~C10!

This result is established by other methods in Ref.@9# in a
slightly different situation. The external potential consider
in Ref. @9# has support in a box of volumeL3 and is scaled
according to the size of the box@namely, v51/L in Eq.
~C3!#.

The thermodynamics of the mean-field trapped gas can
studied in detail from Eq.~C10!. If m<mc5ar0,c ~the criti-
cal chemical potential of the homogeneous mean-field g!,
thenm(r )5m2Vext(r )<mc for all r , so condensation doe
not occur anywhere. Ifm.mc , there is a local condensate o
density @m(r )/a2r0,c# at all pointsr such thatm(r ).mc ,
namely in the region of spaceD5$r uVext(r ),m2mc%. Then
the total amount of condensate is

Ncond~b,m!5E
D
dr @m~r !/a2r0,c#. ~C11!

ObviouslyNcond(b,m) vanishes atm5mc so the critical tem-
peratureTc(N ) as function of the total particle number
defined as the solution of Eq.~C10! whenm5mc andN is
fixed, namely

Nmf„bc ,m~bc!…5N, m~b!5ar0,c~b!. ~C12!

As an example, for an harmonic potentialVext(r )5bur u2/2,
one finds a critical behavior of the condensate fract
Ncond(b,N )/N of the form @keeping now the particle num
ber N5Nmf(b,m) fixed# @27#

Ncond~b,N!

N ;S 12
T

Tc
D 5/2

, T→Tc . ~C13!

This is to be contrasted with the behaviors of the same fr
tion for the homogeneous free or mean-field gas@;1
2(T/T0,c)

3/2#, and for the free gas in an harmonic potent
@;12(T/Ttrap,c)

3# when T approaches the correspondin
critical temperatures.

Clearly, when the corrections to the mean field density
the homogeneous gas are known, they can be impleme
in Eq. ~C4! and thus will also give interesting information
on the imperfect trapped gases.
-
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@4# A. Süto, J. Stat. Phys.112, 375 ~2003!.
@5# J. Lauwers, A. Verbeure, and V. Zagrebnov, J. Phys. A36,

L169 ~2003!; J. Stat. Phys.112, 397 ~2003!.
@6# K. Huang,Statistical Mechanics~Wiley, New York, 1963!.
@7# E. Lieb, J. Math. Phys.7, 98 ~1966!.
@8# J.T. Lewis, J.T. Pule´, and Ph. de Smedt, Dublin Institute fo
. Advanced Studies, Report No. STP-83-48, 1983~unpub-
lished!.

@9# Ph. de Smedt and V. Zagrebnov, Phys. Rev. A35, 4763~1987!.
@10# J.T. Lewis, inStatistical Mechanics and Field Theory: Math

ematical Aspects, Lecture Notes on Physics Vol. 257~Springer,
New York, 1986!, p. 234.

@11# J.L. Lebowitz and O. Penrose, J. Math. Phys.7, 98 ~1966!.
@12# C. Hemmer, J. Math. Phys.5, 75 ~1964!.
@13# J. Ginibre, in Statistical Mechanics and Quantum Fiel

Theory, Proceedings of the Les Houches Summer Schoo
Theoretical Physics, edited by C. DeWitt and R. Stora~Gordon
and Breach, New York, 1971!, p. 327, and references therein
3-13



u-

li-

ys
cs

P. A. MARTIN AND J. PIASECKI PHYSICAL REVIEW E68, 016113 ~2003!
@14# D.M. Ceperley, Rev. Mod. Phys.67, 279 ~1995!.
@15# F. Cornu, Phys. Rev. E53, 4562~1996!.
@16# D. Brydges and Ph. A. Martin, J. Stat. Phys.96, 1163~1999!.
@17# Ph. A. Martin, in Proceedings of the 15th Marian Smol

chowski Symposium@Acta Phys. Polonica B~to be pub-
lished!#.

@18# O. Penrose, inStatistical Mechanics: Foundations and App
cations, edited by T. Bak~Benjamin, Copenhagen, 1967!, p.
101.

@19# B. Duplantier, Nucl. Phys. B430, 489 ~1994!.
@20# V. Ballenegger, Ph.A. Martin, and A. Alastuey, J. Stat. Ph
01611
.

112, 169 ~2002!.
@21# T.D. Lee and C.N. Yang, Phys. Rev.113, 1165~1959!.
@22# T.D. Lee and C.N. Yang, Phys. Rev.117, 897 ~1960!.
@23# P. Grüter and F. Laloe¨, J. Phys. I France7, 485 ~1997!.
@24# J.N. Fuchs, M. Holzmann, and F. Laloe¨, preprint ENS Paris,

e-print cond-mat/0109265.
@25# J. Ginibre, Commun. Math. Phys.8, 26 ~1968!.
@26# M. Fannes, J.V. Pule´, and A. Verbeure, Helv. Phys. Acta55,

391 ~1982!.
@27# M. Eggimann, Diploma work, Institute of Theoretical Physi

EPFL, Lausanne, Switzerland, 2002.
3-14


